AI Features

Linear Regression

Learn to fit a function into the available data through linear regression.

Function approximation

Approximating a function means estimating the values of its parameters. Consider the SSE function we discussed in the previous lesson.

SSE(w^)=(Aw^b)T(Aw^b)SSE(\bold{\hat w})=(A\bold{\hat w}-\bold{b})^T(A\bold{\hat w}-\bold{b})

Approximating SSE means estimating the vector, w\bold w, that nearly satisfies the linear system, also called the linear least squared error solution.

Formal definition

Consider a data set, D={(x1,y1),(x2,y2),...,(xn,yn)}D=\{(\bold{x_1},\bold{y_1}),(\bold{x_2},\bold{y_2}),...,(\bold{x_n},\bold{y_n})\}, where each entry is a pair, xi\bold{x_i} and yi\bold{y_i}, of objects (scalars, vectors, matrices, and so on). Function approximation seeks a function, fwf_\bold{w}, such that:

fw(xi)yif_\bold{w}(\bold{x_i})\approx\bold{y_i}

Example

Let D={(4,1),(3,9)}D=\{(4,1),(-3,9)\}. The function fwf_\bold{w} ...

Ask